Point-Cloud-Based Place Recognition Using CNN Feature Extraction
نویسندگان
چکیده
منابع مشابه
Optical Character Recognition Using 26-Point Feature Extraction and ANN
We present in this paper a system of English handwriting recognition based on 26-point feature extraction of the character. Basically an off-line handwritten alphabetical character recognition system using multilayer feed forward neural network has been described in our work. Firstly a new method, called, 26-point feature extraction is introduced for extracting the features of the handwritten a...
متن کاملObject Recognition by Using Multi-level Feature Point Extraction
In this paper, we present a novel approach for object recognition in real-time by employing multilevel feature analysis and demonstrate the practicality of adapting feature extraction into a Naive Bayesian classification framework that enables simple, efficient, and robust performance. We also show the proposed method scales well as the number of level-classes grows. To effectively understand t...
متن کاملDeep CNN based feature extractor for text-prompted speaker recognition
Deep learning is still not a very common tool in speaker verification field. We study deep convolutional neural network performance in the text-prompted speaker verification task. The prompted passphrase is segmented into word states — i.e. digits — to test each digit utterance separately. We train a single high-level feature extractor for all states and use cosine similarity metric for scoring...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملSpeaker state recognition using an HMM-based feature extraction method
In this article we present an efficient approach to modeling the acoustic features for the tasks of recognizing various paralinguistic henomena. Instead of the standard scheme of adapting the Universal Background Model (UBM), represented by the Gaussian ixture Model (GMM), normally used to model the frame-level acoustic features, we propose to represent the UBM by building monophone-based Hidde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Sensors Journal
سال: 2019
ISSN: 1530-437X,1558-1748,2379-9153
DOI: 10.1109/jsen.2019.2937740